Modeling Gas Nucleation and Condensation Using the Direct Simulation Monte Carlo Method
نویسندگان
چکیده
A general kinetic nucleation and condensation model is proposed and implemented in the direct simulation Monte Carlo method. Both gas and clusters are treated as particles in this model, and clusters possess internal energy and potential energy. Nucleation and condensation processes are treated as collision events, and the probability for possible nucleation or condensation is determined from the nucleation rate and sticking coefficient. Literature review shows that there are many uncertainties in gas nucleation and condensation theory. The proposed model is then very useful for parametric studies. Our parametric studies show that both nucleation rate and sticking coefficient affect properties of the gas and clusters. Simulation of supersonic flow in an expansion nozzle shows that the proposed model is able to simulate complicated flows involving clusters.
منابع مشابه
Siemens primus accelerator simulation using EGSnrc Monte Carlo code and gel dosimetry validation with optical computed tomography system by EGSnrc code
Monte Carlo method is the most accurate method for simulation of radiation therapy equipment. The linear accelerators (linac) are currently the most widely used machines in radiation therapy centers. Monte Carlo modeling of the Siemens Primus linear accelerator in 6 MeV beams was used. Square field size of 10 × 10 cm2 produced by the jaws was compared with TLD. Head simulation of Siemens accele...
متن کاملDevelopment of a novel method in TRMC for a Binary Gas Flow Inside a Rotating Cylinder
A new approach to calculate the axially symmetric binary gas flow is proposed Dalton’s law for partial pressures contributed by each species of a binary gas mixture (argon and helium) is incorporated into numerical simulation of rarefied axially symmetric flow inside a rotating cylinder using the time relaxed Monte-Carlo (TRMC) scheme and the direct simulation Monte-Carlo (DSMC) method. The res...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملSimulation of Temperature Distribution in a Continuous Tunnel Reheat Furnace Using the Monte Carlo Method
A mathematical model of a continuous reheating furnace has been developed to identify the design and operating parameters that significantly affect furnace performance. In this study, the furnace is modeled 3 dimensionally and theMonte Carlomethod is used to find the overall absorption factor. The overall absorption factor is then used to calculate the energy balance for furnace walls, the gas,...
متن کاملSensing of Methanol and Ethanol with Nano-Structured SnO2 (110) in Gas Phase: Monte Carlo Simulation
The SnO2 films deposited from inorganic precursors via sol–gel dip coating method have been found to be highly sensitive to methanol and ethanol vapor. Three dimensional nano-structure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. The sensitivity and selectivity of SnO2 (110) nano...
متن کامل